Online and Incremental Appearance-based SLAM in Highly Dynamic Environments
نویسندگان
چکیده
This paper presents a novel method for online and incremental appearance-based localization and mapping in a highly dynamic environment. Using position-invariant robust features (PIRFs), the method can achieve a high rate of recall with 100% precision. It can handle both strong perceptual aliasing and dynamic changes of places efficiently. Its performance also extends beyond conventional images; it is applicable to omnidirectional images for which the major portions of scenes are similar for most places. The proposed PIRF-based Navigation method named PIRF-Nav is evaluated by testing it on two standard datasets as is in FAB-MAP and on an additional omnidirectional image dataset that we collected. This extra dataset is collected on two days with different specific events, i.e., an open-campus event, to present challenges related to illumination variance and strong dynamic changes, and to test assessment of dynamic scene changes. Results show that PIRF-Nav outperforms FAB-MAP; PIRF-Nav at precision-1 yields a recall rate about two times (approximately 80%) higher than that of FAB-MAP. Its computation time is sufficiently short for real-time applications. The method is fully incremental, and requires no offline process for dictionary creation. Additional testing using combined datasets proves that PIRF-Nav can function over a long term and can solve the kidnapped robot problem.
منابع مشابه
Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملImprovements for an Appearance-based SLAM-Approach for Large-scale Environments
In continuation of our previous work on visual, appearance-based localization and mapping, we presented in [5] a novel appearance-based, visual SLAM approach. The essential contribution of this work was an adaptive sensor model, which is estimated online, and a graph matching scheme to evaluate the likelihood of a given topological map. Both methods enable the combination of an appearance-based...
متن کاملOnline Localization and Mapping with Moving Object Tracking in Dynamic Outdoor Environments with new Demonstrator Data
In this paper, we present a real-time algorithm for online simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic outdoor environments from a moving vehicle equipped with laser sensor and odometry. To correct vehicle location from odometry we introduce a new fast implementation of incremental scan matching method that can work reliably in d...
متن کاملElasticFusion: Real-time dense SLAM and light source estimation
We present a novel approach to real-time dense visual SLAM. Our system is capable of capturing comprehensive dense globally consistent surfel-based maps of room scale environments and beyond explored using an RGB-D camera in an incremental online fashion, without pose graph optimisation or any post-processing steps. This is accomplished by using dense frame-tomodel camera tracking and windowed ...
متن کاملAn Improved Sensor Model on Appearance Based SLAM
In our previous work on visual, appearance-based localization and mapping, we presented in [14] a novel SLAM approach to build visually labeled topological maps. The essential contribution of this work was an adaptive sensor model, which is estimated online, and a graph matching scheme to evaluate the likelihood of a given topological map. Both methods enable the combination of an appearance-ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 30 شماره
صفحات -
تاریخ انتشار 2011